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Introduction

Scaling in VLSI

e Decreasing gate length, gate oxide, supply
voltage

e Increasing speed, cost-performance

Unfavorable effects due to VLSI scaling

e Increasing density
o of system and design

o related issues: delay, current
density, noise




Introduction

Deep submicron interconnects
e Decreasing metal pitch
e Increasing aspect ratio
e |ncreasing metallization levels
e Increasing line resistance and wire-to-wire

capacitance

Problems and issues

e Smaller geometry and denser pattern: RC
delay, signal integrity, crosstalk noise, delay
fluctuation

e Larger current: IR drop and
(electromigration)




Introduction

Reliability problem
e Current density in metal lines increases
e Temperature of interconnect increases
e MTF (Mean Time to Failure) decreases

Problem of power distribution estimation
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Model Order Reduction

e Model order reduction

e Reduce the circuit to a smaller representation
consisting of dominant poles from the original
circuit
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Model Order Reduction

Moment matching-based
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Power Distribution Estimation

Power distribution estimation of
Interconnect

e Given a linear(ized) RLC circuits

e Find power consumption of each resistor
branch of interconnect
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Power Distribution Estimation

Definition of problem

e Given a reduced-order modqel of current at
each resistor branch j(s)=

e Derive E:Rﬁjz(t)dt
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Theorem 1
e |f the Laplace transform of a time-domain
signal j(t), denoted by J(s), has g singularities In
the left half of the s-plane,

J'O“ j2(t)dt = i r

r.: residue of J(-s)J(s) at the singularity of J(s)




Power Distribution Estimation

Sketch of proof
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Power Distribution Estimation

Example
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Power Distribution Estimation

Theorem 2
e |f the Laplace transform of a time-domain
signal |(t), denoted by J(s), has q
In the left half of the s-plane,

[ if0d=3 13(-p)

r,: residue of J(s) at the pole p; of J(s)




Power Distribution Estimation

Example
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Experimental Results

Prototype tool
e SPICE-in and power-out
e Moment matching-based model order
reduction
Estimation accuracy
e Source of error: area under the
e Comparison with SPICE
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Experimental Results

e Numerical example
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Experimental Results

e Numerical example
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Experimental Results

e 1-pole approximation
e Area under j(t) and j(t) Is the same

e Area under j?(t) and j?(t) depends on peakness
and skewness of j(t)
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Experimental Results

e Randomly-generated circuits
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Driver Modeling

e Verify simple linear region resistance

approximation for power distribution
estimation

e Well below 10% both for max and avg error
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Conclusion

Power distribution is important for deep
submicron interconnects

Establish theoretical background for power
distribution analysis of VLSI interconnects

Develop and verify a simple driver model

Future work
e [ast yet accurate method
e |nvestigation of accurate driver model




