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Abstract

Power eÆcient design of real-time embedded systems based on programmable processors

becomes more important as system functionality is increasingly realized through software.

We address a power optimizationmethod for real-time embedded applications on a variable

speed processor. The method combines o�-line and on-line components. The o�-line

component determines the lowest possible maximum processor speed while guaranteeing

deadlines of all tasks. The on-line component dynamically varies the processor speed or

bring a processor into a power-down mode to exploit execution time variations and idle

intervals. Experimental results show that the proposed method obtains a signi�cant power

reduction across several kinds of applications.
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1 Introduction

Recently, power consumption has been a critical design constraint in the design of

digital systems due to widely used portable systems such as cellular phones and PDAs,

which require low power consumption with high speed and complex functionality. The

design of such systems often involves reprogrammable processors such as microprocessors,

microcontrollers, and DSPs in the form of o�-the-shelf components or cores. Furthermore,

an increasing amount of system functionality tends to be realized through software, which

is leveraged by the high performance of modern processors. As a consequence, reduction

of the power consumption of processors is important for the power-eÆcient design of such

systems.

Recognizing the need to reduce the power consumption of processors, a number of

methods have been proposed at the hardware and software levels. The methods at the

software level can be loosely classi�ed into power-aware compilation techniques [1], [2], [3]

and Operating System (OS) directed power management techniques. The importance of

latter approach increases recently because OS is recognized to play a central role in power

management of overall system components.

Broadly, there are two kinds of methods to reduce power consumption of processors in

OS level. The �rst is to bring a processor into a power-down mode, where only certain

parts of the processor such as the clock generation and timer circuits are kept running.

Another method is to use a variable speed processor (VSP), which can change its speed by

varying the clock frequency along with the supply voltage when the required performance

on the processor is lower than the maximum.

Reducing power consumption of processors is fundamentally equivalent to exploiting idle

intervals of processors. Thus, we should �rst identify sources of idle intervals to eÆciently

reduce the power dissipated by processors. Our approach is strongly motivated by the fact

that there are several kinds of sources for idle intervals in a schedule of a real-time task set.

Especially in case of a priority-based preemptive scheduling, which is one of the most widely
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used scheduling methods for real-time systems, we identify three kinds of sources. The

�rst one occurs when a system is not tightly designed for a given processor, meaning that

there is room for design change or improvement; introducing some more tasks, replacing

certain tasks with their version-ups, using other processors with lower performance, and

so on. Even if the system is tightly-designed, there are still idle intervals in case of �xed-

priority scheduling which are strongly dependent upon the relative values of the periods

of the tasks comprising the system; the second source of idle intervals. The third one is

from run-time variation of execution time of each task, that is, the execution time of each

task in run-time is not constant due to data-dependent computation, over-estimation of

worst-case execution time, and so on. Each of these will be elaborated in more detail in

section 3.

To exploit these idle intervals for low-power, we propose a power optimization method

for real-time embedded applications on a VSP with a power-down mode. The proposed

method consists of two components: o�-line component based on real-time analysis of a

task set that exploits the �rst source of idle intervals and on-line component based on

priority-based real-time scheduling that exploits both the second and the third sources.

Speci�cally, for a given real-time task set, we �rst compute the lowest possible maximum

processor speed such that at least one of deadlines are violated if the processor is running

below that speed. With the maximum speed of the VSP set to the computed value,

we then dynamically varies the speed of the VSP or bring the VSP into a power-down

mode to exploit execution time variation of each task and idle intervals present in the

schedule. Note that all kinds of idle intervals can be exploited by on-line component

only [4]. However, we show that combined o�-line and on-line components bring about

more power-saving.

The remainder of the paper is organized as follows. In the next section, we review related

work, which focuses on the reduction of power consumption of processors. In section 3,

we present the system model for power optimization, o�-line component, and on-line
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component. In section 4, experimental results are presented to evaluate the proposed

method. Finally, a conclusion follows in section 5.

2 Related Work

2.1 Power-Down Modes

In most embedded systems, a processor often waits for some events from its environment,

wasting its power. To reduce the waste, modern processors are often equipped with various

levels of power modes. In the case of the PowerPC 603 processor [5], there are four power

modes (Full On, Doze, Nap, and Sleep), which can be selected by setting the appropriate

control bits in a register. Each mode is associated with a level of power saving and delay

overhead. In the conventional approach employed in most portable appliances, a processor

enters power-down mode after it stays in an idle state for a prede�ned time interval. Since

the processor still wastes its energy while in the idle state, this approach fails to obtain a

large reduction in energy when the idle interval occurs frequently but its length is short.

In [6], [7], the length of the next idle period is predicted based on a history of processor

usage. The predicted value becomes the metric to determine whether it is bene�cial to

enter power-down modes or not. This method focuses on event-driven applications such as

user-interfaces where the latency caused by the mismatch between the predicted value and

the actual value can be tolerated. However, an exact value or a lower bound are needed

instead of a predicted value for the next idle period when the power-down modes are to

be applied in a hard real-time system.

2.2 Scheduling on a Variable Speed Processor

It is a well-known fact that power consumption in CMOS circuits can be decomposed

into two parts: static and dynamic. The dynamic power consumption, which is a dominant
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factor, is described by

Pdynamic = a � f � CL � V 2
dd; (1)

where a is the expected number of transitions per cycle, called switching activity, f is the

clock frequency, CL is the average load capacitance, and Vdd is the supply voltage. The

reduction of Vdd is the most e�ective way to reduce the power consumption as expected

in (1). However, reducing Vdd leads to an increase in circuit delay, denoted by td, which

can be approximated by

td = k
Vdd

(Vdd � Vt)�
; (2)

where k is a constant, Vt is the threshold voltage, and � is a constant satisfying 1 < � < 2.

A digital system designed with a �xed supply voltage (Vdd) works at a �xed speed and

then can be made idle if the computational demand is less than the maximum. If the

supply voltage is lowered dynamically to the lowest value satisfying the required speed

constraint of the system as exhibited by (2), less power would be consumed. This kind

of adaptive scaling of the supply voltage was exploited in self-timed circuits [8] and DSP

systems [9]. Recently, the same mechanism was adapted to a microprocessor architec-

ture [10], [11]. For example, [11] reports a processor based on the ARM microprocessor

core, where the operating voltage is set by a feedback loop which compares the current

and target frequencies.

A scheduling method to reduce power consumption of a VSP was �rst proposed in [12]

and was later extended in [13]. The basic method is that short-term processor usage is

predicted from a history of processor utilization. From the predicted value, the speed of

the processor is set to the appropriate value. Because latency exists when the prediction

fails, these methods cannot be applied to real-time systems.

Static scheduling methods for real-time systems were proposed in [14], [15], [16]. The

underlying model of their approaches is a set of tasks with a single period. When periods of

tasks are di�erent from each other, which is the conventional model employed in real-time

system design, we can transform a problem by taking the LCM (Least Common Multiple)
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of tasks' periods as a single period and treating each instance of the same task occurring

within the LCM a a di�erent task. This can cause a practical problem because we require

excessively large memory space to save a statically computed schedule, whereas the size of

memory is one of the design constraints in a typical embedded system. Furthermore, LCM

becomes excessively large when periods of tasks are mutually prime. Another problem is

that a schedule is computed based on the assumption that a �xed amount of execution

time is required for each task. As a result, the full potential of power saving cannot be

obtained when variations of execution time exist.

A dynamic scheduling method, called Average Rate Heuristic (AVR), was also proposed

in [14] with the same model as in the static version. Associated with each task is its

average-rate requirement, which is de�ned by dividing its required number of cycles by its

time frame (deadline� arrival time). At any time t, the AVR sets the speed of a processor

to the sum of average-rate requirements of tasks whose time frame includes t. Among

available tasks, AVR resorts to the earliest deadline policy [17] to choose a task. Because

average-rate requirements are computed statically with �xed numbers of execution cycles,

the same problem occurs when variations of execution time exist.

3 Power Optimization Method

3.1 System Model

For a processor model, we assume a VSP similar to [11]. The reference clock frequency,

denoted as fref , and the reference supply voltage, denoted as Vref , of the VSP is 100 MHz

and 3.3 V, respectively. The clock frequency can be varied from 100 MHz down to 8 MHz

with a step size of 1 MHz. The supply voltage is 3.3 V for 100 MHz clock and, for lower

clock frequency, follows (2). We assume that there is only one power-down mode available.

The average power consumed by the processor when it is in power-down mode is 5% of

the fully active mode and it takes 10 clock cycles to return from the power-down mode
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to the fully active mode. The processor model described above is only for the purpose of

simulation which is to be presented in section 4. Therefore, our method can be applied for

other processor models, for example of a processor with only two speed levels [18], though

the result of power saving may be di�erent.

In a typical real-time embedded application, there are many periodic tasks that share

hardware resources. To ensure that each task satis�es its timing constraint, the execution

of tasks should be coordinated in a controlled manner. This is often done via priority-based

preemptive scheduling algorithm. There are two kinds of algorithms based on priority as-

signment: �xed-priority (or static-priority) algorithms such as rate-monotonic (RMS) [17]

and deadline-monotonic (DMS) [19] and dynamic-priority algorithms such as earliest dead-

line �rst (EDF) [17]. A priority-based scheduling is quite simple to implement in most

kernels, and it typically requires little if any extra hardware support. Also, there are many

analytical methods to check the schedulability of the system.

The real-time embedded application is modeled as a set of tasks, � = f�1; �2; : : : ; �ng,

which are numbered in order of decreasing priority in case of �xed-priority scheduling

(FPS). The parameters of �i include its period (the minimum inter-arrival time between

successive requests in case of a sporadic task) Ti, deadline Di, and worst case execution

time (WCET) Ci. A task set is called feasible if deadline of each task is satis�ed at all

times. Note that Ci is measured or estimated [20] when the VSP is running in reference

speed (fref and Vref).

To minimize energy consumption while guaranteeing the feasibility of a task set, we �rst

determine the lowest possible speed such that the task set is feasible if the VSP is running

in that speed entirely, and will be infeasible if running in lower speed. This can be done

with o�-line method as illustrated in the next subsection. Note that worst-case scenario

(all tasks execute in WCET at all times) must be assumed in o�-line method. However,

during operation of the system, the execution time of each task frequently deviates from its

WCET, sometimes by a large amount. In many cases, the possibility of a task running at
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its WCET is usually very low. Furthermore, the complex architecture of modern processors

(pipeline, instruction cache, data cache, and so on) makes the static estimation of WCET

diÆcult thereby resulting in over-estimation of WCET. As examples of this variation in

execution time, Figure 1 shows the ratio between the best-case execution time (BCET)

and WCET obtained from [21] for a number of applications.

Figure 1 goes here

These execution time variation cannot be exploited with o�-line method alone. Further-

more, with �xed-priority scheduling, there are still idle intervals remained even if the VSP

is running in the lowest possible speed entirely. To exploit these execution time variation

and idle intervals, we use an on-line method, where we dynamically vary the speed of the

VSP or bring the VSP into a power-down mode according to the status of the task set.

Example 1 Consider the three tasks given in Table 1. Rate monotonic priority assign-

ment is a natural choice because periods (Ti) are equal to deadlines (Di). Priorities are

assigned in row order as shown in the �fth column of the table (lower value means higher

priority). Assume all tasks are released simultaneously at time 0. A typical schedule,

which assumes that tasks run at their WCETs (Ci), is shown in Figure 2(a). If the speed

of the processor is lowered by half or if the processor with half performance is used mean-

ing that Ci is doubled, the schedule becomes as shown in Figure 2(b). It is noted that

the task set scheduled in Figure 2(b) just meets its feasibility. For example, if �2 were to

take a little longer to complete, �3 would miss its deadline at time 100. Even though the

system is tightly constructed, there are still idle intervals, as can be seen in Figure 2(b).

When some task instances are completed earlier than their WCETs, there are more idle

intervals as shown in Figure 2(c). These idle intervals are sources of power reduction by

on-line method. 2

Table 1 goes here

Figure 2 goes here
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3.2 Computation of Maximum Speed

For a given task set, in order to determine the lowest possible maximum processor

speed (thus the lowest possible maximum clock frequency, denoted as fmax, and the lowest

possible maximum supply voltage, denoted as Vmax), the analysis of the schedulability of

the task set is required. We �rst present the approach for �xed-priority algorithms and

then the approach for dynamic-priority algorithms.

The schedulability analysis for �xed-priority scheduling is based on the critical instant

theorem [17] which says that if a task meets its deadline whenever the task is requested

simultaneously with requests for all higher priority tasks, then the deadline will always

be met for all task phasings. This implies that it is needed to perform the analysis from

time 0 up to LCM of all task periods under the assumption that all tasks are requested

simultaneously at time 0. This again requires the analysis to be performed in the contin-

uous time interval. Lehoczky et al. [22] shows that the analysis is actually needed only

at discrete time points instead of continuous time interval. The set of time points, called

scheduling points, for task �i is de�ned by

Si = fkTjjj = 1; 2; : : : ; i; k = 1; : : : ; b
Ti

Tj
cg; (3)

when Ti = Di. If Di is di�erent from Ti, (3) can be modi�ed as

S 0
i = (Si � ftjt 2 Si; t > Dig) [ fDig: (4)

�i can be scheduled without violating its deadline, if there exist one or more scheduling

points t 2 Si, which satisfy
iX

k=1

Ckd
t

Tk
e � t: (5)

Note that the left hand side of the inequality represents the cumulative demands on the

processor imposed by �1; �2; : : : ; �i.

Now, it is assumed that elements of Si are sorted in ascending order. Si;j is de�ned as

the jth element of Si, that is, jth scheduling point of �i. Thus, for each scheduling point
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Si;j, �i just meets its scheduling point if it satis�es

iX

k=1

1

�i;j
Ckd

Si;j

Tk
e = Si;j; (6)

where �i;j is speed scaling factor for �i at Si;j. For example, �i;j =
1
2
means that the speed

of the processor is reduced by half thus execution times of tasks are doubled. Solving for

�i;j gives

�i;j =

Pi
k=1Ckd

Si;j

Tk
e

Si;j
: (7)

Because �i is schedulable if it completes its execution before or at any scheduling points

and the minimum possible speed scaling factor is needed for �i for minimum power con-

sumption, speed scaling factor for �i, denoted by �i, is given by

�i = min
j

�i;j: (8)

In order to get a feasible task set, all tasks are required to be schedulable. Thus, speed

scaling factor for the task set, denoted by �, is given by

� = max
i

�i: (9)

Note that if � is larger than 1, the original task set is already infeasible meaning that it

cannot be scheduled with �xed-priority scheduling even with fref and Vref . Hence, fmax

(correspondingly Vmax) is obtained by

fmax = �fref : (10)

In practice, we should take d�frefe for fmax because discrete levels of frequencies are

assumed. We also need clamping operation so that fmax falls between 8 MHz and 100

MHz.

For dynamic-priority scheduling, especially for EDF scheduling with Di = Ti, a task set

is feasible if and only if the processor utilization is less than or equal to 1 [17]. Thus, � is

straightforward to compute because it is equal to the processor utilization, given by

� =
X

8�i2�

Ci

Ti
: (11)
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It should be noted that there are no idle intervals meaning that the power consumption

of the processor is minimized if the processor is running entirely in the speed obtained

with (11) provided that fractional value is possible for fmax, and each task always execute

in constant execution time of WCET. When Di < Ti, we can use Di instead of Ti in

the denominator of the right hand side of equation (11), called total density in this case

instead of processor utilization. Note that, however, � obtained in this way is conservative

in that the task set is feasible with EDF if the total density is equal to or less than 1 but

the opposite does not hold.

Example 2 Consider again the three tasks given in Table 1 with rate monotonic priority

assignment. From equation (3), the set of scheduling points for each task is given by

S1 = fT1g; S2 = fT1; T2g; S3 = fT1; T2; T3g:

We compute � using equations (7), (8), and (9), which yields

�1 = min(
C1

T1
) = 0:1;

�2 = min(
C1 + C2

T1
;
2C1 + C2

T2
) = 0:25;

�3 = min(
C1 + C2 + C3

T1
;
2C1 + C2 + C3

T2
;
2C1 + 2C2 + C3

T3
)

= 0:5;

� = max(�1; �2; �3) = 0:5:

Thus, we can reduce the maximum speed by as much as half or can use the processor with

half performance (see Figure 2(b)). 2

3.3 Low-Power Priority-Based Real-Time Scheduling

Even if the processor is running in the speed obtained with the method of the previous

subsection, there are still idle intervals that arise from two sources (see Example 1). The

�rst source is idle intervals inherently present in �xed-priority scheduling (thus it is not
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the case with EDF) because of di�erent period of each task. The second one is run-time

variation of execution time of each task. In more speci�c, although constant execution

time of WCET should be assumed in the method of the previous subsection, the execution

time of each task in run-time is not constant due to data-dependent computation, over-

estimation of WCET, and so on. To exploit these idle intervals, we propose a power-

eÆcient version of priority-based real-time scheduling method, which we call lpps for

brevity.

The basic mechanism of the proposed scheduling algorithm is based on the implementa-

tion model in [23], [24]. The scheduler maintains two queues, one called run queue and the

other called delay queue. The run queue holds tasks that are waiting to run and the tasks

in the queue are ordered by priority. The task that is running on the processor is called

the active task. The delay queue holds tasks that have already run in their period and

are waiting for their next period to start again. They are ordered by the time at which

their release is due. When the scheduler is invoked, it searches the delay queue to see if

any tasks should be moved to the run queue. If some of the tasks in the delay queue are

moved to the run queue, the scheduler compares the active task to the task at the head

of the run queue. If the priority of the active task is lower, a context switch occurs.

Because most information about the tasks is available through the queues and lpps

depends on this information, the proposed scheduler can be implemented with a slight

modi�cation of the conventional scheduler. Figure 3 shows the pseudo code of the lpps

scheduling algorithm. The code lines between L5 and L11 (except L9 to be explained

shortly) conform to the behavior of the conventional scheduler. lpps works when the

run queue is empty (L12). This is further divided into two cases: one where all tasks

have completed their executions in each of their periods and are waiting for their next

arrival times while residing in the delay queue (L13) and the other where all tasks except

the active task have completed their execution (L16). In the �rst case, we can bring the

processor into a power-down mode because there are no tasks that need it. Furthermore,
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we know how long the processor will be idle because the task at the head of the delay

queue is the �rst one that will require the processor (recall that the delay queue is ordered

by the tasks' release times). This is the key ingredient of lpps. Thus, we set a timer to

expire at the next release time of the task at the head of the delay queue and then put the

processor into the power-down mode. Because, there is a delay overhead to wake up from

the power-down mode, the timer actually should be set to expire earlier by that amount

of delay (L14).

Figure 3 goes here

In the second case, we can control the speed of the processor because there is just one

task (the active task) to execute and the processor will be available solely for that task

until the minimum of the deadline of the active task and the release time of the task

at the head of the delay queue. The amount of time that will be needed by the active

task equals its WCET less its already executed time. This can be obtained when a task

is preempted because of a request for a task with higher priority during its execution

(L8). When this occurs, we get the executed time of the task from the timer (L9) that

is based on an external clock, which is independent of the variation of processor's speed.

Note that we assume the execution of the whole task takes its WCET because at the

time of scheduling we have no information whether it will take less than WCET or not.

When the active task completes its execution, the scheduler gets the control and increases

the speed of the processor to the maximum to prepare for the next arrival of tasks (L1

through L4). This involves a delay for raising the supply voltage and subsequently the

clock frequency. Thus, the active task actually should complete its execution earlier by

an amount equal to this delay. Considering all these factors, we obtain the ratio of the

processor speed needed for the active task to the full speed (L17). From the computed

ratio, we �nd an appropriate clock frequency (L18). In practice, only discrete levels of

frequencies are available, and among them we should select a frequency larger than or

12



equal to the computed one to guarantee the timing constraints. All these processes are

illustrated in the following example.

Example 3 Consider Figure 2(b), that is, the same task set in Table 1 with Ci doubled.

At time 160 when a request for �2 arrives, the status of queues and the information

associated with each task are shown in Figure 4(a). For simplicity of illustration, assume

that the delay required to wake up from the power-down mode and that required to change

the speed of a processor are all 0. Because the run queue is empty with the active task of

�2, the scheduler computes the desired ratio of speed that yields 20�0
200�160

= 0:5 (see L17 of

Fig. 3). Thus, we can slow down the processor by half. Now, assume that the instance

of �2 started at time 160 executes at the lowered speed, but completes its execution at

time 180 instead of 200, meaning that it executes in half its WCET. At this time, the

status of queues becomes that of Fig. 4(b). Because all tasks reside in the delay queue,

the scheduler brings the processor into a power-down mode (see L14 and L15 of Fig. 3)

with the timer set to the next arrival time of �1 (200). 2

Figure 4 goes here

4 Experimental Results

To evaluate the proposed method, we perform simulations with several examples and

compare the average power consumption with the proposed method against that with the

conventional priority-based scheduling. In the conventional priority-based scheduling, the

processor is assumed to execute NOP (no operation) instructions, when it is not being

occupied by any tasks. The average power consumed by a NOP instruction is assumed to

be 20% of that consumed by a typical instruction [25]. We also compare the result with

that of [4].

We collect four applications for experiments: an avionics task set [26], an ins [24],

a flight control [27], and a cnc machine controller [28]. The �rst three examples are
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mission critical applications and the last one is a digital controller for a CNC machine,

which is an automatic machining tool that is used to produce user-de�ned workpieces.

For each task comprising an application, three timing parameters (Ti, Di, and Ci) are

given. Because the statistics of the actual execution times of instances of the tasks are not

available, it is assumed that the execution time of each instance of a task is drawn from

a random Gaussian distribution with mean of m = BCET+WCET
2

and standard deviation

of � = WCET�BCET
6

, where WCET= Ci. Then, the BCET is varied from 10% to 100%

of the WCET for each task. This ensures that almost all generated values fall between

BCET and WCET because the probability that a random variable x takes on a value in

the interval [m� 3�;m + 3�] of a random Gaussian distribution is approximately 99.7%.

If we set WCET to be equal to m+3� and solve for � with the help of equation for m, we

get equation for �. After the generation of execution time, we apply clamping operation

so that the generated value does not exceed WCET.

First, fmax and Vmax are obtained for each application using equations (9) and (11),

which are summarized in Table 2. Clearly, they are smaller with EDF than with FPS,

because EDF sets the lower bound for fmax and Vmax. In case of ins, fmax with FPS is

very close to that with EDF meaning that very high processor utilization is possible even

with FPS. This is because most periods of tasks in ins is harmonic, that is, period of each

task is divisible with each other.

Table 2 goes here

Next, with the maximum speed of the VSP set to the corresponding value shown in

Table 2, each task set is simulated with lpps. The results are shown in Figure 5, where

lpps/RMS indicates that RMS is used for basic scheduling algorithm of lpps and lpps/EDF

similarly for EDF. The vertical axis indicates average power reduction with each method

compared to the conventional priority-based scheduling (see Figure 2). Note that the power

gain from o�-line method is independent on the horizontal axis because worst-case scenario
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is assumed in that method. The power gain from on-line method increases as the BCET

gets smaller (variation of execution time gets larger). This is because the chances both for

dynamically varying the speed of the VSP and for bringing the VSP into a power-down

mode increases as the variation of execution times increases. The largest gain is obtained

in cnc. This can be understood from Table 2 because cnc can be operated in the lowest

speed, meaning that its processor utilization in reference speed is the lowest. Compared to

on-line method alone, we can obtain more power saving with combined o�-line and on-line

methods.

Figure 5 goes here

5 Conclusion

In this paper, we propose a power optimization method for a real-time embedded ap-

plication on a variable speed processor. The method consists of two components. First,

we determine the lowest possible processor speed such that the task set is feasible if the

processor is running in that speed entirely, and will be infeasible if running in lower speed.

Then, to exploit execution time variation and idle intervals, we relies on low-power priority-

based real-time scheduling, which dynamically varies the speed of the VSP or brings the

processor into a power-down mode. Experimental results show that the proposed method

obtains a signi�cant power reduction across several applications.
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Figure 2. A schedule for the example task set. (a) When tasks always run at their

WCETs. (b) When tasks always run at their WCETs on a processor with the speed

lowered by half. (c) When the execution times of some task instances are smaller

than their WCETs.
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L1: if current frequency < maximum frequency then

L2: increase the clock frequency and the supply voltage to the maximum value;

L3: exit;

L4: end if

L5: while delay queue.head.release time � current time do

L6: move delay queue.head to the run queue;

L7: end do

L8: if run queue.head.priority > active task.priority then

L9: set the active task.executed time;

L10: context switch;

L11: end if

L12: if run queue is empty then

L13: if active task is null then

L14: set timer to (delay queue.head.release time � wakeup delay);

L15: enter power-down mode;

L16: else

L17: speed ratio = Compute speed ratio();

L18: �nd a minimum allowable clock frequency � speed ratio � max frequency;

L19: adjust the clock frequency along with the supply voltage;

L20: end if

L21: end if

Figure 3. Pseudo code of the lpps scheduler.
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Table 1. An example task set

Ti Di Ci Priority

�1 50 50 5 1

�2 80 80 10 2

�3 100 100 20 3
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Table 2. Maximum frequency and voltage computed for each application. fref = 100

MHz and Vref = 3:3 V.

FPS EDF

fmax Vmax fmax Vmax

avionics 91 MHz 3.1 V 86 MHz 3.0 V

ins 75 MHz 2.7 V 74 MHz 2.7 V

flight control 84 MHz 2.9 V 68 MHz 2.5 V

cnc 54 MHz 2.2 V 49 MHz 2.0 V
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