Abstract
A 1-V input, 0.45-V output switched-capacitor (SC) 2:1 voltage converter is developed in 65-nm CMOS. A proposed voltage-reference-free pulse density modulation (VRF-PDM) increased the efficiency from 17% to 73% at 50-μA output current by reducing the pulse density and eliminating the voltage reference circuit. An output voltage trimming by the hot carrier injection to a comparator and a periodic activation scheme of the SC converter are also proposed to solve the problems attributed to VRF-PDM.

Introduction
Fig. 1 shows an example of block diagram of an energy efficient SoC. The power supply voltage (VDD) of 1V is converter to a 0.5-V energy efficient near threshold logic circuit by a 1/2 voltage converter, while VDD of 1V is directly supplied to analog/RF and I/O circuits. Instead of a buck converter, a switched-capacitor (SC) converter is developed, because the SC converter has a potential to be fully integrated on a chip. Target of this paper is to develop a 1-V input 1/2 voltage converter with the output current (IOUT) from 50μA to 10mA. The design challenges of the 1/2 voltage converter are (1) the degraded efficiency at low IOUT and (2) the implementation of 0.5-V voltage reference circuit (VREF) and the power penalty due to VREF. Note that VREF is often omitted in the previous works [1-7] by simply using an off-chip bias. In addition, design of sub-1V VREF [8] is difficult, because typical VREF operates above 1V. In order to solve the problems, a voltage-reference-free pulse density modulation (VRF-PDM) is proposed to increase the efficiency at low IOUT by reducing the pulse density and eliminating VREF.

Voltage-Reference-Free Pulse Density Modulation
Fig. 2(a) shows a conventional SC 1/2 voltage converter with a constant pulse density (CPD) [2-4] clock. CPD suffers from severe efficiency degradation when IOUT decreases due to excessive clock pulses. Fig. 2(b) shows an other conventional SC 1/2 voltage converter, which rely on VREF and a comparator for pulse density modulation (PDM) [5-7]. VREF has above-mentioned problems. Figs. 2(c) and 3 show a block diagram and a timing chart of the proposed VRF-PDM converter, respectively. The key concept of VRF-PDM is to replace the reference voltage in Fig. 2(b) with the past output voltage (VOUT), thereby eliminating VREF. VOUT is sampled as VNOW and VPAST at each falling edge of CK and CKUPDATE, respectively. Then VNOW and VPAST are compared by a comparator with an offset voltage of ∆V. When VPAST = VNOW is larger than ∆V, a pulse of SC_enable is generated by the comparator to drive the switch matrix. ∆V determines both the pulse density and VOUT. VRF-PDM, however, has a risk of VOUT decreases to 0V, because VPAST may decrease to 0V due to the leakage current of the sampling capacitor when IOUT and the pulse density are very small. In order to avoid the abnormal VOUT lowering, a periodic activation scheme (PAS) of the SC converter is proposed. Fig. 4 shows a concept of PAS in VRF-PDM in comparison with the conventional CPD (Fig. 2(a)) and PDM (Fig. 2(b)). 3 dots in Fig. 4 correspond to Fig. 3. In PAS, even if COMP_out is always low, SC_enable pulse is generated at every 32 clock cycles as shown in Fig. 3(c). Because the SC_enable pulse activates the switch matrix in Fig. 2(c), VOUT goes to VIN/2. After that CKUPDATE is generated and VPAST is refreshed to VOUT. In this way, PAS prevents the abnormal VOUT lowering problem.

Output Voltage Trimming by Hot Carrier Injection
In the proposed VRF-PDM converter, VOUT is determined by ∆V. In order to enable VOUT tuning and the compensation for the random mismatch of the comparator without the fuse trimming, a novel trimming method with a hot carrier injected (HCI) comparator is proposed. Fig. 5 shows a schematic of the HCI comparator. Transistors (M3-M5) are added to a clocked comparator to trim the offset between M1 and M2. Fig. 6 shows a flowchart of the trimming with the HCI comparator using a tester and Table I shows bias conditions for Fig. 6. The goal of the trimming is to make the comparator to flip at IN1=IN2+∆V. At first, the comparator trip point is checked at IN1=IN2±∆V. Depending on the comparator output (OUT), threshold voltage (VTH) of M1 or M2 is increased using HCI by applying a high voltage to 1.2-V 65-nm CMOS transistors. Until the trimming is finished, HCI is repeated. In this way, VOUT trimming is achieved without the fuse.

Experimental Results
The VRF-PDM converter is fabricated with a 65-nm CMOS. Fig. 7 shows the die micrograph. Off-chip capacitors C1 and C2 in Fig. 2(c) of 4.7nF are used. Fig. 8 shows the measured dependence of the pulse density. VOUT, and the output ripple on IOUT. In VRF-PDM, the pulse density decreases with the reduced IOUT. ∆V of 25mV is observed in VRF-PDM. Compared with PDM, 3-mV ripple increase is observed in VRF-PDM due to PDM. Fig. 9 shows the measured waveform of VOUT and SC enable at different IOUT. As IOUT decreases, the pulse density of SC enable also decreases, which shows the PDM operation and corresponds to Fig. 8(a). Fig. 10 shows the measured trimming of the offset voltage of the HCI comparator and the retention characteristics for 6 dies. The offset voltage linearly changes with the stress time, which indicates a good controllability. The retention is good for 1 week. Fig. 11 shows the measured dependence of efficiency on IOUT. The efficiency of conventional SC converter with PDM is calculated based on the measured efficiency of the proposed scheme, with subtraction of the power consumed by state-of-the-art low voltage and low power (14μW) BGR [8]. Severe efficiency degradation is observed on the conventional scheme with CPD at less than 3-mA output current. In contrast, the VRF-PDM converter achieves above 73% efficiency over IOUT range from 50μA to 10mA, with a peak value of 86% at 3mA. Compared with the conventional scheme with CPD, an efficiency increases from 17% to 73% at 50-μA IOUT. Table II shows the performance summary.

Acknowledgment
This work was carried out as a part of Extremely Low Power (ELP) project supported by NEDO.

References
Comparator with
\[\text{Compare} @ \text{IN1}=\text{IN2}+ \]
L 0.5 + H 0

\[\phi \]
L CKUPDATE
OUT?

Time after stress (s)

\[\times 2.5 \]
H 0.5 2.5 COMP_out

Offset voltage of comparator (mV)
for 6 dies.

HCl comparator and the retention characteristics
Fig. 10. Measured trimming of offset voltage of
for 6 dies.

100% pulse density

X 2.5
H 0.5 2.5 COMP_out

Fig. 4. Concept of periodic activation scheme (PAS) in VRF-PDM.

TABLE I Bias conditions for Fig. 6

<table>
<thead>
<tr>
<th>Mode</th>
<th>Compare (\text{IN2}=\text{IN2Sel})</th>
<th>\text{IN1} (V)</th>
<th>\text{IN2} (V)</th>
<th>\text{CK}1</th>
<th>\text{CK}2</th>
<th>\text{IN1Sel}</th>
<th>\text{IN2Sel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT</td>
<td>0.5V</td>
<td>0.5V</td>
<td>0.5V</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>VOUT</td>
<td>2V</td>
<td>2V</td>
<td>2V</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Fig. 7. Chip micrograph.

Fig. 8. Measured results of conventional SC converter with CPD and proposed SC converter with VRF-PDM: (a) output voltage (b) pulse density (c) output ripple.

Fig. 9. Measured waveform of \(V_{\text{OUT}} \) and \text{SC_enable}: (a) \(I_{\text{OUT}}=0.5\text{mA}, \) pulse density=26%.
(b) \(I_{\text{OUT}}=1\text{mA}, \) pulse density=47%.

TABLE II Performance summary

<table>
<thead>
<tr>
<th>Process</th>
<th>65-nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>1.0V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>0.45V</td>
</tr>
<tr>
<td>Output current</td>
<td>50\u201310mA</td>
</tr>
<tr>
<td>Max. output ripple</td>
<td>14mV</td>
</tr>
<tr>
<td>Max. power efficiency</td>
<td>80% at 3mA</td>
</tr>
<tr>
<td>Frequency</td>
<td>10MHz</td>
</tr>
<tr>
<td>Active area</td>
<td>0.079mm²</td>
</tr>
</tbody>
</table>

Fig. 10. Measured trimming of offset voltage of HCI comparator and the retention characteristics for 6 dies.

Fig. 11. Efficiency of (1) conventional SC converter with CPD (measured), (2) conventional SC converter with PDM (calculated from (1)), and (3) proposed SC converter with VRF-PDM (measured).